Preparation and structural study of monocyclopentadienylalkoxoniobium (\mathbf{V}) derivatives. Crystal structure of $\left\{\left[\mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right) \mathrm{Cl}_{2}(\mu-\mathrm{O})\left(\mu-\mathrm{OOC}_{6} \mathrm{H}_{4}\right)_{2}\right\}\right.$

F.A. Jalón, A. Otero, P. Royo
Departamento de Quimica Inorgánica, Universidad Alcalá de Henares, Campus Universitario, Alcalá de Henares (Spain)
Juan M. Fernández-G., María J. Rosales and R.A. Toscano
Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510 D.F. (México)

(Received May 11th, 1987)

Abstract

Alcoholysis with catechol or substitution reactions with NaOPh on $\mathrm{Nb}\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right) \mathrm{Cl}_{4}\left(\mathrm{R}=\mathrm{H}, \mathrm{SiMe}_{3}\right)$ have given new alkoxoniobium (V) derivatives of the type $\mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right) \mathrm{Cl}_{3}(\mathrm{OPh})\left(\mathrm{R}=\mathrm{H}, \quad \mathrm{SiMe}_{3}\right) \mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Cl}_{2}\left(\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $\left\{\left[\mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right) \mathrm{Cl}\right]_{2}(\mu-\mathrm{O})\left(\mu-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right\}$. The crystal structure of the last species has been studied. The two metal atoms, 3.079(1) \AA apart, are symmetrically bridged by the oxo and the two catechol ligands. The two oxygen atoms of each catecholate group are coordinated to the metal atoms, one of them to one Nb atom and the other bridging the two Nb atoms. Chloride and CpSiMe_{3} ligands complete the coordination sphere of both metal atoms.

We have described the hydrolysis of $\mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right) \mathrm{Cl}_{4}$ with $\mathrm{R}=\mathrm{H}$ or SiMe_{3} to give dimeric μ-oxo complexes, one of which was characterized by X-ray diffraction [1]. Here we report a study of the reactions of these compounds with catechol or with NaOPh to give new alkoxoniobium(V) species.

Dichloromethane solutions of $\mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right) \mathrm{Cl}_{4}$ are readily hydrolyzed [1]. Reaction with water preferentially takes place rather than alcoholysis, when catechol is added. Under these conditions catechol reacts with the resulting dinuclear μ-oxo complex to give the μ-oxo- μ-catecholate derivative I, according to eq. 1 . The same $\mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right) \mathrm{Cl}_{4} \rightarrow\left\{\left[\mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right) \mathrm{Cl}_{2}\right]_{2}(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}\right\}$

$$
\begin{gather*}
\downarrow(\mathrm{OH})_{2} \mathrm{C}_{6} \mathrm{H}_{4} \\
\left\{\left[\mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right) \mathrm{Cl}\right]_{2}(\mu-\mathrm{O})\left(\mu-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right\} \tag{1}
\end{gather*}
$$

product is obtained by treating the previously isolated $\mu-0 \times 0$ dimer with catechol
In contrast, addition of catechol to a dichloromethane suspension of the insoluble $\mathrm{Nb}\left(\eta^{\dagger}-\mathrm{C}_{4} \mathrm{H}_{5}\right) \mathrm{Cl}_{4}$ leads to direct alcoholvsiv to give the hatoalkoxe comples II. according to eq. 2
$\left.\mathrm{Nb}\left(\eta^{5} \mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Cl}_{4}+(\mathrm{OH}) \mathrm{C}_{4} \mathrm{H}_{3}+\mathrm{Nb}^{3} \mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{6}\right)$
(1)

When NaOPh is used. exclusive substitution of the starting compoum is observed for both halogeno compounds, according to eq. 3
$\mathrm{Nb}\left(\mathrm{n}^{5} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{R}\right) \mathrm{Cl}_{4}+\mathrm{NaOPh}-\mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{R}\right) \mathrm{Cl}(\mathrm{OPh})+\mathrm{NaO}$

$$
\begin{aligned}
& (H, R=H \\
& I ; R=S i M e
\end{aligned}
$$

No reaction took place between the μ-oxo dimers and NaOPh
All the isolated complexes show the \mathbb{R} absorptions for the η cyclopentadienyl rings [2]. I and IV also show bands due to the SiMe, group [3]. The broad band observed for complex 1 at $650 \mathrm{~cm}{ }^{\prime}$ must be assigned to the $\mathrm{ramm}^{(\mathrm{Nb}} \mathrm{O}$ Nb) vbration of an angular system [4]. The w(()) stretching vibration appears at $1240-1250 \mathrm{~cm}^{-1}$. whereas absumptions due to $p(\mathrm{M}$ O) are at 580 cm

H NMR spectra show a singlet for $\left(\eta^{5}-(5)\right.$) in complexes II nod III. with the chemical shifts expected for niobium(V) derivatives $[5]$, whereas a multiplet is observed for I and IV [G] along with a singlet due to the SiMe: protons. A complex signal is observed for the aromatic protons of both catecholate and phenyl groups *.

The structure of complex l bas been determined by X-tay diffraction as discussed below. We have no structurd data which permit a defmiuse assignment for complexes II JV, hut in wiew of the structure observed for complex 1, we suggest a similar dimeric structure for complex II, contaning pseudooctahedra nobium atoms sharing one of the exneatecholate groups. with formation of two μ ono bridges along with two teminal Nb Cl bonds, Complexes II and iv should probably have dimeric or polvmenic stuctures.

Crystals of I suitable for X my diffraction were obtained for hiquid diffusion of hexane into a saturated toluene solution of the complex.

Crystal data for $1 . \mathrm{C}_{23} \mathrm{H}_{3} \mathrm{C}, \mathrm{Vb}_{2} \mathrm{O}_{3} \mathrm{Si}_{2}, \mathrm{M}=76298$, monocimic space group
 $D_{8}=1.45 \mathrm{~g} \mathrm{~cm}^{3} . f(000)=1544 . \mu\left(\mathrm{Mo}-K_{0}\right) 9.52 \mathrm{~cm}, 1638$ reflections measured on a Nicolet R3m 4 -circle diffactoneter. The tructure was whed by the heary atom method followed by Foumer syohesis, and refined by full matrix least suares methods to $R=0.032$ and $R_{4}=0.033$ for 1428 observed reflotinons $f f=30(F)$.

The molecule lies on a crstallographic two-fodaxis. Of is ntwated in a special position, and only half a molethe is observed in the asymmetric whe . The motecular

[^0]

Fig. 1. The molecular structure of $\left\{\left[\mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right) \mathrm{Cl}\right]_{2}(\mu-\mathrm{O})\left(\mu-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right\}$ (I). Bond lengths: $\mathrm{Nb}-\mathrm{Nba} 3.079(1) ; \mathrm{Nb}-\mathrm{O}(1) 2.224(3) ; \mathrm{Nb}-\mathrm{O}(1 \mathrm{a}) 2.173(3) ; \mathrm{Nb}-\mathrm{O}(2 \mathrm{a}) 1.970(3) ; \mathrm{Nba}-\mathrm{O}(1) 2.173(3)$; $\mathrm{Nb}-\mathrm{O}(3) 1.926(3)$; $\mathrm{Nb}-\mathrm{C}(7) 2.473(5)$; $\mathrm{Nb}-\mathrm{C}(8) 2.456(5) ; \mathrm{Nb}-\mathrm{C}(9) 2.460$ (6); $\mathrm{Nb}-\mathrm{C}(10) 2.411(5)$; $\mathrm{Nb}-\mathrm{C}(11) 2.414(5) \AA$; bond angles $\mathrm{Nb}-\mathrm{O}(1)-\mathrm{Nba} 88.9(1) ; \mathrm{Nb}-\mathrm{O}(3)-\mathrm{Nba} 106.2(2)^{\circ}$.
structure of $\left\{\left[\mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right) \mathrm{Cl}_{2}(\mu-\mathrm{O})\left(\mu-\mathrm{OOC}_{6} \mathrm{H}_{4}\right)_{2}\right\}\right.$ is shown in Fig. 1, together with some important bond parameters.

Compound I consists of a Nb dimer, bridged by one oxo-ligand and two dioxo-catecholate groups. Chloride and $\mathrm{SiMe}_{3} \mathrm{Cp}$ complete the coordination sphere of each metal atom.

The distance between the two metal atoms is $3.079(1) \AA$, which is similar to $\mathrm{Nb}-\mathrm{Nb}$ bond lengths in some compounds with two S ligands bridging the metal-metal bond $[7,8]$. There are few structural reports of other Nb compounds with oxygen as the bridging atom [9]. In $\left\{\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{3}\right) \mathrm{NbCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{O})\right\}[10]$ and $\left\{\left[\left(\eta^{5}-\mathrm{Cp}\right)_{2} \mathrm{NbCl}\right]_{2} \mathrm{O}\right\}^{2+}[11]$, the $\mathrm{Nb}-\mathrm{O}-\mathrm{Nb}$ angles, although significantly nonlinear, have values approaching 180° (171.8(1) and $\left.169.3(8)^{\circ}\right)$, respectively. In I this angle is much smaller ($106.2(2)^{\circ}$), but this must be due to the constraint imposed by the catechol ligands, which also bridge the two metal atoms. This behaviour has been observed in the case of oxo-bridged compounds of other metals. The $\mathrm{Nb}-\mathrm{O}$ (oxo) distance of $1.926(3) \AA$ is the same as that in $\left\{\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{3}\right) \mathrm{Nb}\right.\right.$ $\left.\left.\mathrm{Cl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \mathrm{O}(\mu-\mathrm{O})\right\}[10]$.

A small electronic density peak was observed next to $O(3)$, the oxo bridge, and it was tentatively refined as a hydrogen atom, i.e. instead of an oxo bridge there would be an aquo bridge. The data refined properly, giving R and Rw the same as those obtained without the hydrogen. The hydrogen atom thus located would be within interaction distance ($1.751(50) \AA$) of one of the niobium atoms. However, a detailed
study showed that this peak could be due to the vibration of the oxygen atom, and the absence of any spectroscopic evidence to the contrary make us think that it must be an oxo bridge.

The catecholate ligands are coordinated to both metal atoms through the two oxygen atoms. One of the oxygen atoms, $O(2)$, is bonded to just one of the Nb atoms, with a bond length of $1.970(3) \AA$. The other oxygen atom in each of the catecholate ions bridges the two metal atoms in a nearly symmetrical fashion (bond lengths of $2.224(3)$ and $2.173(3)^{\circ}$: these $\mathrm{Nb}-\mathrm{O}$ distances are similar to that expected for a single bond ($2.10-2.15 \mathrm{~A}$). In the case of the singly bonded oxygen, the bond length is intermediate between that for a single and that for a double bond ($1.70 \AA$) [10]. The bonds between the metal and the bridging oxygen atoms form angles of $70.9(1), 71.4(1)$, and $72.5(1)^{\circ}$

The $\mathrm{Nb}-\mathrm{Cl}$ bonds are $2.405(1) \mathrm{A}$, a value similar to that in other nobium(V) complexes, such as $\mathrm{NbCl}_{3}\left[\mathrm{NCH}_{3} \mathrm{C}(\mathrm{S}) \mathrm{CH}_{3}\right]_{2}$ [12]. The average $\mathrm{C}-\mathrm{C}$ distance in the cyclopentadienyl rings is $1.393 \AA$, and the average C C C angle 107.6°. The $\mathrm{Nb}-\mathrm{C}_{\mathrm{C}}$ mean distance is 2.443 A , not significantly different from other reported values [9].

Tables of atomic coordinates and a list of bond parameters have been deposited with the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW. They may be obtained on request from the Director by citing full literature reference for the communication.

Acknowledgements. The authors gratefully acknowledge financial support from Comisión Asesora de Investigación Científica y Técnica (407-84). Spain

References

```
1 A.M. Andreu, F.A. Jalon, A. Otero, P. Royo, A.M Manotti and A. Tripicho, S Chem Soc. Dalon
    Trans.. (1987)953
2 \text { H.P. Fritz, Adv. Organomet. Chem, I (1964) } 2 3 9 .
3 H. Burger, Organomet. Chem. Rev. A., 3(1068)}42
4 \text { W.P. Griffith, J Chem. Soc. A. (1969)221}
5W.E. Douglas and M.L.H.Green, J. Chem. Soc., Dalton Trans., (1972)1796.
6 \text { M.F. Lappert, C.J. Picket, P.I. Riley and P.I.W. Yarrow, J. Chem. Soc.. Dalton Trans. (1981) 805}
7 L.I. Guggenberger and F.N. Tebhe, J. Am. Chem Soc., 93 (1971) 5924: I. Guggenterger. Imorg
    Chem. 12(1973)294
8 \text { W.H. Hermann, H. Biersack, M.I. Zeigler and B. Babach. J. Organomet Ghem, 20, 108!) (3)}
9 C.E. Halloway and M. Melnik. J. Organomet Chem., 303 (1986)1
10 K. Prout and J.C. Daran, Acta Crystallogr. B. 35 (1979)2882
11 K. Prout, T.S Camerom, R.A. Fomer, SR. Crtchle, P. Denton and O. R Res Acta (rastallogr. B.
    30(1974)2290.
12 M.G.B. Drew and ID. Wikins, Chem Sos, Daiton Trans. (1974) I0&
```


[^0]:

 (6) C H

